

MAN-003-001617

Seat No. ___

B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2018

Mathematics: Paper - 602 (A)

(Mathematical Analysis & Group Theory)

Faculty Code: 003

Subject Code: 001617

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

1 Answer the following:

- (1) Define Least Upper Bound
- (2) Define Countable set
- (3) Define Totally Bounded set
- (4) Is Q (Set of Rational) compact set?
- (5) Is the arbitrary in trisection of compact set compact?
- (6) L $(t^{-1/2}) =$
- (7) Define is $L^{-1} \left(\frac{3}{(s-1)^2 9} \right) =$
- (8) Define convolution function

(9)
$$L(f(t)) = f^{-}(s)$$
 then $L\begin{bmatrix} 1 \\ 0 \end{bmatrix} f(u)du =$

- (10) $L^{-1}\left(\frac{1}{4s+5}\right) =$
- (11) Define Epimorphism
- (12) How many proper Ideal can a field have?
- (13) Define Leading Coefficient
- (14) Define Divisor of Polynomial

- (15) Find characteristic of the ring $(Z_8, +_8, *_8)$
- (16) Find the greatest lower bound of $\left\{\frac{1}{n}/n \in N\right\}$
- (17) Find $L^{-}(\frac{s}{\left(s^2 + a^2\right)^2} =$
- (18) If polynomial f = (3, 0, 0, 0,) then find |f|
- (19) Find zero divisor of $(Z_6, +_6, *_6)$
- (20) What do you mean by Cubic polynomials?
- 2 (A) Attempt any Three:
 - (1) $E_n = [-n, n] n \in N$ then the collection $\{E_n \mid n \in N\}$ is a cover of R or not?
 - (2) Show that A = (1, 2) and B = [2, 3) are not Separated sets of Metric space R.
 - (3) State and prove Heine Borel Theorem.
 - (4) Find Laplace Transformation of $f(t) = \begin{cases} t, 0 < t < 4 \\ 5, t > 4 \end{cases}$
 - (5) Prove If L $L\{f(t)\} = \overline{f(s)}$ then $L\begin{bmatrix} f(u) du \end{bmatrix} = \frac{1}{8} \overline{f(s)}$
 - (6) Find Inverse Laplace Transformation of $\frac{s}{\left(s^2-1\right)^2}$
 - (B) Attempt any Three:
 - (1) Let E be a non-empty closed subset of metric space R. If E is upper bounded set then Iub E lies in E.
 - (2) By using definition prove that (0,3) is not compact.
 - (3) Let (X, d) be a metric space. Then X is totally bounded set.
 - (4) Find Laplace transformation of $-3t \sin^2 t$

6

(5) Let
$$L\{f(t)\} = \overline{f(s)}$$
 and $\left(\frac{f(t)}{t}\right)$ has Laplace transform then $L\left\{\frac{f(t)}{t}\right\} = \int_{0}^{\infty} f(\overline{s}) ds$

(6) Find
$$L^{-1} \left\{ \log \left(1 + \frac{4}{s^2} \right) \right\}$$

- (C) Attempt any **Two**:
 - (1) Prove that every closed subset of compact set is compact in metric space.
 - (2) Every Compact set of a metric space is closed and Bounded
 - (3) A metric space (X, d) is a sequential compact if and only if it satisfies Bolzano-weirstrass theorem
 - (4) Using convolution theorem. Find inverse Laplace

Transformation of
$$\frac{s^2}{\left(s^2 + a^2\right)\left(s^2 + b^2\right)}$$

- (5) Find Inverse Laplace transformation of $\frac{S}{s^4 + s^2 + 1}$
- 3 (A) Attempt any Three:
 - (1) $\Phi: (G, ^*) \to (G', \Delta)$ be Homomorphism, If N is a normal subgroup of G then $\Phi(N)$ is a Normal subgroup of $\Phi(G)$.
 - (2) Show that a cyclic group of order eight is homorphism to a cyclic group of order four.
 - (3) Obtain radical of the ring $(Z_{12}, +_{12}, \bullet_{12})$ and $(Z_{19}, +_{19}, \bullet_{19})$
 - (4) Prove that field has no proper Ideal.
 - (5) f(x) = (2,0,-3.0.4,0,0,0...) and $g(x) = (1,-2,0,0,0...) \in R[x]$ them find f(x).g(x)
 - (6) Factorize $f(x) = x^4 + 4 \in Z_5[x]$ by using factor theorem.

10

(B) Attempt any Three:

- 9
- (1) What will be the intersection of a right and left Ideals of a ring? Justify
- (2) Let $\Phi: (G,*) \to (G',\Delta)$ be Homomorphism, Then K_{ϕ} Is a normal subgroup of G.
- (3) Is $U = \left\{ f \in C[0,1] / \int_{0}^{1} f(t) dt = 1 \right\}$ a subring of $\left(C[0,1], +, * \right)$?
- (4) Prove that field has no proper Ideal.
- (5) Find g.c.d. of $f(x) = 6x^3 + 5x^2 2x + 25$ and $g(x) = 2x^2 3x + 5 \in R[x]$
- (6) State and prove Remainder theorem
- (C) Attempt any Two:

- (1) A Homomorphism $\Phi: (G, *) \to (G', \Delta)$ is one-one if and if only $K_{\Phi} = \{e\}$
- (2) A commutative ring with unity is a field if it has no Proper Ideal.
- (3) A non-empty subset I of a ring R is an Ideal of R. iff the following two conditions hold.
 - (a) $a-b \in I \ \forall a,b \in I$
 - (b) $ra, ar \in I, \forall a \in R$
- (4) Express f(x) as q(x)g(x)+r(x) form by using division algorithm for $f(x)=x^4-3x^3+2x^2+4x-1 \\ g(x)=x^2-2x+3$ $\in Z_5[x]$
- (5) Any Ideal in integral domain f(x) is a Principal Ideal.